Owning Palette: Linear Algebra VIs
Requires: Full Development System
Performs the Schur decomposition of a square matrix. Wire data to the Input Matrix input to determine the polymorphic instance to use or manually select the instance.
Use the pull-down menu to select an instance of this VI.
Add to the block diagram | Find on the palette |
Input Matrix must be a square real matrix. | |||||||||||
compute Schur vectors? specifies whether the VI calculates Schur Vectors. The default is FALSE. | |||||||||||
order specifies how to order the Eigenvalues and the corresponding Schur Form and Schur Vectors.
|
|||||||||||
Schur Form returns the block upper triangular matrix in real Schur form. | |||||||||||
Schur Vectors returns the orthogonal matrix. | |||||||||||
Eigenvalues returns a complex vector that contains all the computed eigenvalues of Input Matrix. | |||||||||||
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster. |
Input Matrix must be a square complex matrix. | |||||||||||
compute Schur vectors? specifies whether the VI calculates Schur Vectors. The default is FALSE. | |||||||||||
order specifies how to order the Eigenvalues and the corresponding Schur Form and Schur Vectors.
|
|||||||||||
Schur Form returns the upper triangular matrix. | |||||||||||
Schur Vectors returns the unitary matrix. | |||||||||||
Eigenvalues returns a complex vector that contains all the computed eigenvalues of Input Matrix. | |||||||||||
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster. |
The following expression defines the Schur decomposition of a square n × n matrix A.
A = QSQH
where S is in Schur form, and QH is the conjugate transpose of matrix Q.
For a real matrix A, Q is an n × n orthogonal matrix. S is a block upper triangular matrix in real Schur form, whose elements on the main diagonal are all 1 × 1 or 2 × 2 blocks, as shown in the following matrix.
where Sii are square blocks of dimension 1 or 2, and i = 1, 2, …, m.
For a complex matrix A, Q is an n × n unitary matrix. S is an upper triangular matrix in complex Schur form.