Owning Palette: Linear Algebra VIs
Requires: Full Development System
Performs the Hessenberg decomposition of Input Matrix. Wire data to the Input Matrix input to determine the polymorphic instance to use or manually select the instance.
Use the pull-down menu to select an instance of this VI.
Add to the block diagram | Find on the palette |
Input Matrix is an n × n real matrix. | |
index low is the index low value from the Matrix Balance VI. If you balance Input Matrix with the Matrix Balance VI, wire the index low output of the Matrix Balance VI to this input. If the index low input of this VI equals –1 (default), the VI uses 0 for index low. | |
index high is the index high value from the Matrix Balance VI. If you balance Input Matrix with the Matrix Balance VI, wire the index high output of the Matrix Balance VI to this input. If the index high input of this VI equals –1 (default), the VI uses n – 1 for index high. | |
Hessenberg Form H returns an n × n matrix in Hessenberg form. | |
Orthogonal Matrix Q returns the n × n orthogonal matrix. | |
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster. |
Input Matrix is an n × n complex matrix. | |
index low is the index low value from the Matrix Balance VI. If you balance Input Matrix with the Matrix Balance VI, wire the index low output of the Matrix Balance VI to this input. If the index low input of this VI equals –1 (default), the VI uses 0 for index low. | |
index high is the index high value from the Matrix Balance VI. If you balance Input Matrix with the Matrix Balance VI, wire the index high output of the Matrix Balance VI to this input. If the index high input of this VI equals –1 (default), the VI uses n – 1 for index high. | |
Hessenberg Form H returns an n × n matrix in Hessenberg form. | |
Orthogonal Matrix Q returns the n × n unitary matrix. | |
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster. |
The following expression defines the Hessenberg decomposition of an n × n matrix A:
A = QHQH
where Q is an orthogonal matrix when matrix A is a real matrix and a unitary matrix when matrix A is a complex matrix, QH is the conjugate transpose of matrix Q, and H is a Hessenberg matrix.
By definition, a Hessenberg matrix is a matrix with zeros under the main subdiagonal, as shown by the following matrix.