dsyr - Symmetric Matrix Rank-1 Update (DBL) VI

Owning Palette: Basic Linear Algebra Subroutines VIs

Requires: Full Development System

Calculates the rank–1 update of the upper or lower triangular component of a symmetric matrix.

Details  

 Add to the block diagram  Find on the palette
x is an N–element real vector.
A is a real symmetric matrix. The VI updates only the upper or lower triangular component of A, depending on what you select for matrix A type. A must have at least N rows and N columns. The default is an N × N matrix with zero values for all elements.
matrix A type specifies whether to update the upper or lower triangular component of A.

2Lower Triangular—The VI uses only the lower triangular component of A to calculate the update.
3Upper Triangular (default)—The VI uses only the upper triangular component of A to calculate the update.
alpha is a real scalar that scales x*x^T, where x^T is the same as x transposed.
dsyr is a real matrix of the same dimensions as A. For the elements in the first N rows and N columns of the triangular component you select for matrix A type, dsyr returns the results of the calculation. For any remaining elements, dsyr returns the value of the element in A with the same index.
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster.

dsyr - Symmetric Matrix Rank-1 Update (DBL) Details

Refer to the BLAS (Basic Linear Algebra Subprograms) website at netlib.org for more information on BLAS functions.