Owning Palette: Geometry VIs
Requires: Full Development System
Rotates a three-dimensional Cartesian coordinate in the counterclockwise direction using the direction method. Wire data to the X input to determine the polymorphic instance to use or manually select the instance.
Use the pull-down menu to select an instance of this VI.
Add to the block diagram | Find on the palette |
X specifies the input x-coordinates. | |||||
Y specifies the input y-coordinates. | |||||
Z specifies the input z-coordinates. | |||||
Rotation Matrix specifies the 3-by-3 direction cosine matrix. If rotation matrix type is Direction Cosines, each element in Rotation Matrix must be in the range of [-1, 1]. | |||||
rotation matrix type determines whether the Rotation Matrix contains the direction angles or the direction cosines.
|
|||||
X Out returns the rotated x-coordinates. | |||||
Y Out returns the rotated y-coordinates. | |||||
Z Out returns the rotated z-coordinates. | |||||
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster. |
x is the real input x-component for the two-element vector. | |||||
y is the real input y-component for the two-element vector. | |||||
z specifies the input z-coordinate. | |||||
Rotation Matrix specifies the 3-by-3 direction cosine matrix. If rotation matrix type is Direction Cosines, each element in Rotation Matrix must be in the range of [-1, 1]. | |||||
rotation matrix type determines whether the Rotation Matrix contains the direction angles or the direction cosines.
|
|||||
x out returns the rotated x-coordinate. | |||||
y out returns the rotated y-coordinate. | |||||
z out returns the rotated z-coordinate. | |||||
error returns any error or warning from the VI. You can wire error to the Error Cluster From Error Code VI to convert the error code or warning into an error cluster. |
For a point P, , , and are the direction angles of vector OP, as shown in the following illustration:
The cosines of the direction angles are direction cosines.
Before the rotation, the coordinate of point P is (x, y, z). After the rotation, the coordinate of point P is (x', y', z'), where
A is the Rotation Matrix defined by:
1, 1, and 1 are the direction angles of the X'-axis to the X-, Y-, and Z-axes. 2, 2, and 2 are the direction angles of the Y'-axis to the X-, Y-, and Z-axes. 3, 3, and 3 are the direction angles of the Z'-axis to the X-, Y-, and Z-axes.